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ON AXIALLY UNIFORM STRESS AND STRAIN
IN AXIALLY HOMOGENEOUS CYLINDRICAL SHELLS

E. REISSNERt

Massachusetts Institute of Technology

INTRODUCTION

IN WHAT follows we first state the differential equations of linear theory for axially uniform
stress and strain in axially homogeneous cylindrical shells, as a special case of the system
of general shell equations which have recently been formulated by Schaefer [6], Gunther [1]
and the present author [3]. The dominant characteristics ofthese equations are the inclusion
of moments turning about the normals to the middle surface of the shell, together with the
effect of transverse shear deformation, and the ensuing clarity and simplicity of the static
geometric duality, involving equilibrium, compatibility and constitutive equations. We
then show that the complete system uncouples, for rather general classes of stress strain
relations, into two separate systems of equations. One of these, which is considered further
in what follows, deals with the problem of St. Venant torsion of thin walled tubes as a
problem of the two-dimensional theory of elastic cylindrical shells. We have previously
considered this problem within the framework of the two-dimensional theory of thin
shells [2] and have shown in particular (1) the importance of retaining certain small terms
in one of the equations of moment equilibrium, and (2) the possibility of obtaining an
explicit torque-twist relation and explicit expressions for stress resultants and couples
which include, as limiting special cases, the wellknown relations of Bredt for closed tubes
and the completely different relations for open tubes as stated by Prescott.

Our present consideration of the problem of torsion, in addition to being somewhat
more general than our earlier approach, is simpler and more transparent than the earlier
approach, reflecting the extent to which all linear shell theory has become simpler and more
transparent in the course of the last ten years.

DIFFERENTIAL EQUATIONS FOR AXIALLY UNIFORM STRESS AND STRAIN
IN CYLINDRICAL SHELLS

We take as curvilinear coordinates on the middle surface of the shell circumferential
arc length s and axial distance z. We then have as coefficients of the linear element of the
shell IXs = IX: = 1 and as curvature measures llRss == llR = - </>' and l1Rs: = llRzz = 0
where </> = </>(s) is the tangent angle to the meridians of the shell, in accordance with Fig. 1,
and where primes indicate differentiation with respect to s.

We take the differential equations of this theory for general orthogonal coordinates
as recently summarized [4,5] (setting el = sand e2 = z) and furthermore assume that
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FIG. 1. Axially uniform cylindrical shell and element of shell showing stress resultants and couples
for the problem of torsion.

stress resultants and stress couples, as well as the corresponding strain measures are
independent of the axial coordinate z. Omitting for simplicity's sake surface force and
moment load intensity terms, we then have six equilibrium equations and six compatibility
equations of the following form

N' +Qs = 0 K' - Az = 0 (la, b)ss R ' zz R

N~z = 0, K: s = 0 (2a, b)

Q' _ N ss = 0 A + Kzz = 0 (3a, b)s R ' z R

M~s-Qs = 0 e:z-Az = 0 (4a, b)

, Ps , A Yz 0 (5a, b)Msz-Qz- R = 0, ezs - s+ R =

P' N M sz , ezs 0 (6a, b)s+ sz-Nzs + R = 0, Yz+Kzs-Ksz-R = .
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Equations (1) to (6) are complemented by constitutive equations which are here taken to
be of the form

au
N ss = -a'css

au
N sz = -a'csz

au
Qz=a'

')'z

au
M ss = -a'

K ss
p = au

z aA
z

(7)

with U a given function of the indicated twelve arguments.
Inspection indicates that the system (1) to (6) consists of two separate sets of equations.

These are equations (1), (3) and (4), and equations (2), (5) and (6), respectively. While, in
general, the system (1), (3) and (4) will be coupled to the system (2), (5) and (6) because of
the form of the constitutive equations (7) there will be no such coupling for quite large
classes of constitutive equations, i.e., for the class of constitutive equations for which

Equations (1) to (7) are to be considered in conjunction with appropriate boundary or
transition conditions for sections s = const. of the shell. These may pertain to forces and
moments and/or to the associated components of translational and rotational displace
ment. For an interpretation of the latter in terms of components of strain, use is made of
strain displacement relations of the form

csz = uz•s - OJ,

')'z = ¢z+w,z'

czs = us,z +OJ,

(8)

Kzz = f/Jz,zo

In these the nature of the z-dependence of the components ofdisplacement is limited by the
condition that all components of strain must be independent of z.

DIFFERENTIAL EQUATIONS FOR TORSION

We have as expression for the torque T acting over the cross sections of the shell the
integral

T = f [Mzs-(Nzs sin ¢ +Qz cos 1jJ) x + [Nzs cos ¢- Qz sin ¢) y] ds. (9)

In order to evaluate (9) we make use of the equilibrium equations

N~z = 0, M~z-Qz+¢'Ps = 0, (10)

and of the compatibility equations

K~s = 0, (11)
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together with constitutive equations which for definiteness sake are now taken in the form

(12)

where A, A., AQ, D, D. and Dp are given functions of s.
We furthermore assume that the vanishing of all the stress resultants and couples in

(la), (3a) and (4a) implies, in conjunction with the associated constitutive equations, the
strain conditions

(13)

Insofar as boundary conditions for the system (10) to (12) are concerned, it is instructive
to separately state the conditions for open and closed cross-section tubes. For a tube with
open cross-section SI :::; s :::; S2 the conditions of no edge tractions are the vanishing of
N sz ' M sz and Ps (which for a tube with Dp = AQ = 0 reduce and contract to the one condi
tion ofvanishing N sz)' For a tube with closed cross section we have altogether six conditions
of continuity, three of them for N sz ' M sz and Ps and three of them, assuming the continuity
of displacements, for K.. , Ezs and yz (again with reductions and contractions for the case
Dp = AQ = 0).

Concerning the form of the sixth-order differential equation system (10) to (12) we
have the existence of two first integrals in (10) and (11),

(14)

and the remaining equations in (10) and (11) may be written, with the help of (12), in the
form of a fourth order system for N zs' Ksz ' Qz' As, as follows

(DKsz),-Qz+1/DpAs = -D~Ko (15)

(DpAs),-Nzs-</J'DKsz = -No+</J'D.KO (16)

(ANzs)' - As - </J'AQQz = - A~N0 (17)

(AQQz)'-Ksz+</J'ANzs = -Ko-</J'A.No. (18)

The fourth order system (15) to (18) reduces to a zeroth order system for the case
Dp = AQ = 0, as for this case equations (16) and (18) become two equations for N zs and KSZ'

without derivatives, and equations (15) and (17) determine Qz and As without integrations.
When Dp = 0 and AQ i= 0 or AQ = 0 and Dp i= 0 a reduction from fourth order to second
order occurs.

CALCULATION OF DISPLACEMENTS

Introduction of equations (13) together with the relation Kzs = Ko into the strain dis
placement relations (8) leads to the result that the six components of translational and
rotational displacement must be of the form

w = w(s) (19)

and, except for a state of rigid-body displacements,

Us = KoZ(Y cos </J - x sin </J), W = KoZ( - Y sin </J -x cos </J), (20)



(21)
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Equations (20) show that the constant of integration KO represents what is usually referred
to as the angle of twist of the torsion problem.

TORQUE-TWIST AND UNIVALUEDNESS-oF-DISPLACEMENT RELATIONS
FOR CLOSED CROSS-SECTION SHELLS

Writing, on the basis of (8), the relation £zs +£sz = uz,s +us,z and observing that Uz must
be a single-val!Jed function of the arclength coordinate s we have, on the basis of the first
equation in (20), the displacement univaluedness condition

f(Szs+Ssz)dS-Kof (ycosc/J-xsinc/J)ds = O.

Equation (21) is to be used in conjunction with the torque-twist relation (9). Use of the
differential equations of equilibrium (10) and appropriate integrations by parts lead to an
alternate version of (9), remarkably similar in form to equation (21), namely

f(Mzs +M sz)ds +No f(y cos c/J - x sin c/J) ds = T. (22)

Equation (22) is effectively equivalent to equation (11) in [2] while equation (21) is
effectively equivalent to the differently appearing and differently derived equation (19) in [2].

The principal point of the work in [2] was that use of the two equations equivalent to
(21) to (22) would, for the case AQ = Dp = 0, lead to explicit closed-form expressions for
No and Ko, and therewith for stresses and deformations in terms of the applied torque, in
such a way that the previously known results for thin-walled closed tubes and for thin
walled open tubes would come out as limiting special cases of formulas providing a con
tinuous transition from one of the special cases to the other.

We obtain a somewhat more general version of our earlier results upon deriving from
the constitutive equations (12) with AQ = Dp = 0, and with (14), (10) and (11) (where now
p~ = )'~ = 0), expressions for £sz, £zs' M sz , M zs of the form

(1+ ~~)(:::) = (A+A*)L+D(A~A*)/R2)No+(~JD;D*KO (23)

(1 +~~)(:::) = (D+D*)L +A(D~D*)/R2)KO-(~JA ;A*No. (24)

Introduction of (23) and (24) into (21) and (22) gives as two simultaneous equations for
No and Ko,

(25)

(26)

In this S is the cross-sectional area enclosed by the middle surface meridian curve of the
shell

S = !f(xSinc/J-ycosc/J)dS. (27)
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(28)

(30)

(29)

With AD and (A+A*)(D+D*) being of the order of the square of the wall thickness of
the shell, equations (25) and (26) are effectively equivalent to the simpler relations

No f(A +A*) dS+KoS = 0

KO f(D+D*)dS-NoS = iT.

Equations (28) and (29) evidently imply the torque twist relation

T= {2f(D+D*)dS+f(A~~*)ds}KO
which reduces to our previously given formula for shells uniform in thickness direction,
upon setting A + A* = 1/2Gh and D + D* = Gh3/6.

The first term on the left in (30) in general is negligible for a closed shell. The case of an
open shell is obtained from (30) upon considering an open shell as a special case of a closed
shell, with A +A* = 00 and D+D* = 0 over an appropriate portion of the path of integra
tion. Beyond this, equation (30) evidently allows a continuous transition from the case for
which the first term on the right is negligible compared to the second term, to the case for
which the second term on the right is negligible compared to the first term. An explicit
example of a case where such a continuous transition occurs may be found in [2].

We finally note that explicit generalizations of (23) to (30) are possible by using instead
of (12) constitutive equations of the form

Szs = ANzs + A*Nsz + BKzs + B*Ksz

M zs = DKzs+D*Ksz+CNzs+C*Nsz

with corresponding expressions for £sz and Msz'
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